The prize is awarded to non-commercial projects for basic research in the field of cardiovascular pathology.
This research encompasses scientific disciplines such as biochemistry, physiology, and pharmacology and their interplay, and involves laboratory studies with cell cultures, animal studies or physiological experiments.
Patients are not in the centre of the study but biological samples (e.g. blood) can be used for this purpose.
In Myhre syndrome (MYHRS), cognitive deficiency, congenital heart disease, and impaired ocular and gastrointestinal development identified neural crest involvement in the pathogenesis. MYHRS results from gain-of-function variants (PV) in SMAD4, that disrupt transforming growth factor β and bone morphogenic protein signaling. We use a zebrafish model for MYHRS to understand how abnormal neural crest cell migration and differentiation cause cardiovascular manifestations in Myhre syndrome.
Adult cardiomyocytes are sensitive to oxygen changes, leading to cell death and heart issues. In contrast, fetal cardiomyocytes resist low oxygen, using glycolysis. After birth, they switch to glycolysis and fatty acid oxidation but lose hypoxia tolerance regulated by HIF. The research seeks to understand these changes and find genes to prevent cardiomyocyte necrosis and maintain energy production, advancing heart disease treatment and personalized medicine.
In this project, I aim to improve the molecular basis of bicuspid aortic valve-related aortopathy by identifying early cell-specific disease genes in a representative Smad6 mutant mouse model using transcriptome-wide spatial profiling on embryonic tissue. With SMAD6 being the most common mutated gene, I will tackle our current gap in knowledge on the pathogenic basis underlying this disease in order to advance patient management.
Marfan syndrome is caused by pathogenic variants in fibrillin-1, and is associated with aortic wall damage. We use fibrillin-1 mutant mouse models to study the mechanisms leading to aortic disease. Using single-nuclear RNA sequencing and immunohistochemical staining we plan to identify changes in aortic cell populations in these models. We will also investigate cell type-specific molecular mechanisms. Our results are likely to lead to improved diagnosis and treatment options for aortic disease.
We have shown that mice deficient for P2Y4 nucleotide receptor display reduced cardiac inflammation and smaller infarcts than wild type mice in the left anterior descending coronary artery ligation model. The present project aims to characterize cardioprotective plasma exosomes in these mice. We will investigate the sources of these exosomes and their ability to induce leukocyte polarization. Human P2Y4 polymorphisms potentially related to cardioprotection will also be studied.
Diabetes is a growing epidemic affecting a large part of the population and is a significant public health challenge. In addition to vascular defects, diabetic patients develop a particular form of heart disease called diabetic cardiomyopathy. Our laboratory has demonstrated that protein acetylation is crucial in the early stage of the disease. Our project aimed to deeply comprehend the molecular mechanisms linking protein acetylation and the onset of diabetic cardiomyopathy.
Growing body of evidence associate changes in cardiac metabolism to the pathogenesis and progression of heart failure. Plasmatic myo-inositol is high in patients with failing hearts, suggesting that it may participate in heart failure development. Myo-inositol transporter SMIT1 is expressed in cardiac fibroblasts and cardiomyocytes. Our hypothesis is that myoinositol/SMIT1 axis favor hypertrophy and fibrosis, thus we aim to establish its impact on left ventricular remodeling and heart failure.
Arrhythmogenic cardiomyopathy (ACM) is a genetically inherited disease characterized by progressive cardiomyocyte loss and fibro-fatty replacement of the ventricular myocardium. ACM is mostly caused by mutations in genes encoding proteins of the intercalated disc, with PKP2, DSG2, and DSP, encoding for plakophilin-2, desmoglein-2, and desmoplakin, respectively, being most frequently mutated.
Arrhythmogenic cardiomyopathy classically manifests as ventricular arrhythmias and loss of heart muscle cells, which is often the first clinical manifestation of the disease, and are an indication for cardiac transplantation. The heterogeneous landscape of ACM pathogenesis complicates the search for effective therapeutic options. To this day, the molecular mechanisms underlying this disease remain poorly understood and characterized, even for patients with an identified mutation. Our ultimate aim is to gain a better understanding of the molecular mechanisms, by further exploring the microRNA dysregulation, as previously observed in ACM models and patients.
As a first part of the project, we are generating three human induced pluripotent stem cell (hiPSC) lines, which will be derived from ACM patient urine samples. These hiPSC lines will harbor a mutation in DSG2, DSP and CTNNA3 (the latter encoding for αT-catenin). An isogenic control line carrying the corrected gene will be generated for each hiPSC line using CRISPR/Cas9. After differentiation, the resulting induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) will be characterized on electrophysiological, molecular and ultrastructural level. We will focus on morphology and function and analyse the effect of stress on iPS-CMs by mechanical means.
In order to study the pathogenic mechanisms of ACM, RNA sequencing will be performed to profile gene expression in the different ACM and control cardiomyocytes in basal and stressed conditions. We hypothesize that different genetic mutations can lead to a specific miRNA expression pattern, resulting in altered modulation of signaling pathways. Comparing differentially expressed genes and miRNA levels between different ACM lines and their respective control lines will allow us to further refine the genotype-phenotype correlation within the broad ACM spectrum. This may enable more tailored miRNA-based strategies than currently available for the diagnosis and treatment of ACM patients.
A major function of the lymphatic system is to drain tissue fluid and maintain fluid homeostasis. A dysfunctional lymphatic vasculature is associated with development of several diseases, including lymphedema or tissue swelling. Lymphedema predisposes amongst others for atherosclerosis and exacerbates various cardiovascular diseases. Worldwide approximately 250 million people suffer from this disease. Despite the considerable public health significance, no real cure exists for lymphedema, only symptom-controlling physical therapy. In this project, we will study the BMP signalling pathway, a pathway that has recently emerged to co-regulate lymphatic vessel development and stability. We will make use of human lymphatic endothelial cell culture systems, a mouse lymphedema model and patient material. Understanding how differences between various organ-specific lymphatic beds are established and the response of these organ-specific vessels to environmental changes is essential to identify mechanisms underlying lymphatic vessel restricted diseases and to design improved therapeutic treatments.
Promising novel approach to Brugada syndrome research: identification of genetic modifiers using genome and transcriptome analysis in induced pluripotent stem cell-derived cardiomyocyte model
Les patients pour lesquels un examen des artères coronaires est conseillé s’avèrent dans près d’un cas sur dix avoir une sténose du tronc commun, à la base de l’artère coronaire gauche. Cette dernière assure plus de quatre cinquièmes du flux sanguin du cœur. L’artère coronaire droite est responsable du reste.
À la suite d’une sténose du tronc commun sévère, une grande partie du cœur ne reçoit plus un afflux sanguin suffisant et n’obtient par conséquent plus assez d’oxygène. Le sang transporte justement de l’oxygène. Dans ce cas-là, un pontage aorto-coronarien est indiqué soit un stent, un dispositif métallique, peut y être placé pour résorber la sténose. Cependant, de telles interventions présentent aussi un certain risque de complications, bien que le risque ne soit généralement pas très élevé et qu’il n’équivaille pas à celui de ne rien entreprendre. Constater la sténose du tronc commun a donc d’importantes implications pour le patient.
Ces dernières années, il s’est avéré qu’il n’est souvent pas aisé pour un cardiologue de dire avec certitude si la sténose du tronc commun est suffisamment sévère que pour entraîner un manque d’oxygène dans le cœur. L’imagerie des artères coronaires peut en effet parfois se révéler trompeuse. En n’examinant que l’apparence de la sténose, on peut en sous-estimer ou en surestimer la sévérité. Un très long rétrécissement qui n’a, à première vue, pas l’air si sévère peut tout de même sérieusement perturber le flux sanguin. Un bref rétrécissement à première vue sévère peut quant à lui moins perturber le débit sanguin que prévu. En outre, nous savons également que les vaisseaux sanguins très fins de notre cœur et invisibles en imagerie peuvent compenser la sténose des vaisseaux plus épais en se dilatant suffisamment.
En cas de doute quant à la sévérité d’une sténose, nous pouvons à présent utiliser des techniques complémentaires pour mesurer si le débit sanguin est insuffisant. Cette mesure s’effectue en introduisant un fin tube dans les artères coronaires durant une coronarographie (une cathétérisation cardiaque durant laquelle nous injectons un colorant dans les artères coronaires). Dans ce tube a été intégré un petit tensiomètre. Lorsque nous passons au travers de la sténose avec ce tube et que nous constatons que la tension diminue fortement une fois le rétrécissement passé, on en conclut que le débit sanguin est insuffisant et qu’une intervention sera dans la plupart des cas indiquée.
Cette technique est entre-temps appliquée quotidiennement dans les centres cardiaques du monde entier. Elle est également utilisée lorsqu’une sténose du tronc commun est constatée. Cependant, il arrive encore que certains médecins, dans de tels cas de sténose, se laissent uniquement guider par l’imagerie. La plupart des études sur ces techniques spéciales n’ont en effet inclus que peu voire aucun patient atteint d’une sténose du tronc commun. En effet, ces patients sont en général rapidement redirigés vers un pontage aorto-coronarien. Ces techniques se révèlent toutefois tout aussi valables pour l’évaluation des sténoses du tronc commun. Plus encore, tout semble indiquer qu’elles permettent d’éviter des interventions superflues.
Pour obtenir davantage de preuves, nous avons développé l’étude PHYNAL (Prospective Left Main Physiology Registry). Cette étude vise à suivre des patients qui ont subi un examen des artères coronaires auprès d’un cardiologue qui a recours à ces techniques de mesure au quotidien. L’objectif est de vérifier comment les patients se portent à long terme, après avoir subi une intervention pour résorber leur sténose du tronc commun. Ou encore comment se portent des patients qui, sur la base des mesures, n’ont pas eu besoin d’intervention. Chez ces dernières, nous observons également l’évolution de la maladie dans les artères coronaires pour détecter une éventuelle progression de la sténose ou de nouveaux rétrécissements. Nous vérifions si les mesures prises peuvent prédire cette évolution.